Materials Physics Terminology

Word [units]	Definition	How can you tell?	Opposite
Breaking or Fracture Stress [Nm ⁻² or Pa]	Stress at the point of fracture	Last (not necessarily the highest) point on σ-ε graph.	n/a
Brittle	Small deformation before fracture. Fractures by cracking.	Short (usually high gradient) linear region on σ-ε graph	Tough
Ductile	Can be drawn into a wire. Does not crack.	Plastic region on σ-ε graph is large	Brittle
Elastic	No permanent deformation after removal of stress.	Unloading curve returns to same point as the loading curve started from. σ-ε graph probably has significant linear region.	Plastic
Hardness [no units*]	Little indentation for a given σ	Not easily, but if something has a high Young's modulus and/or high Yield point, it's <i>likely</i> to be hard.	Softness
Hookean	Obeys Hooke's Law (<i>i.e.</i> that $\sigma \propto \varepsilon$)	σ-ε graph has an initial linear region	Non- Hookean
Malleable [†]	Can be beaten into sheets	Plastic region on σ-ε graph is large	Brittle
Plastic	Applying a force and removing it deforms the sample permanently.	Unloading curve does not return to same point as the loading curve started from.	Elastic
Stiff	Large value of E	Initial linear region on σ-ε graph has high gradient	n/a
Stiffness [Nm ⁻² or Pa]	Young's Modulus	$= \frac{\sigma}{\varepsilon} \text{ at any point on graph, but}$ usually in initial linear region	n/a
Strength	= UTS	See under UTS	Weakness
Tensile Stress	Any stress you are referring to which is < UTS when material is under tension	n/a	Compressive Stress
Toughness [Jm ⁻³ OR Jm ⁻²] [‡]	Energy absorbed per unit Volume before fracture OR Energy used per new area created during fracture.	Large Plastic region on σ-ε graph (plastic deformation absorbs energy); large area beneath the σ-ε curve [§]	Brittle
Ultimate Tensile Stress (UTS) [Nm ⁻² or Pa]	Maximum σ material can take before breaking	Highest point on σ-ε graph.	n/a
Yield Point/ Yield Stress	When structure of the material is being changed. More strain is not necessarily caused by more stress.	First "mini-peak" on typical (e.g. steel) σ-ε graph**	n/a

.

^{*} This is not *strictly* true. Hardness has to be measured using a standardised test: Vickers and Brinell tests are two of the most commonly used. Hardness is then quantified as a number without units (e.g. "Vickers Hardness = 440 HV")

[†] Ductile and Malleable are practically the same thing, but <u>ductile</u> refers to the effect of a <u>tensile</u> force; <u>malleable</u> to the effect of a <u>compressive</u> force. The opposite word (brittle) applies to both tensile and compressive situations.

[‡] Some sources use Jm⁻², but many other respectable sources use Jm⁻³ due to using slightly different defining situations.

[§] Strictly, the toughness is measured by measuring the area (*i.e.* integrating) beneath the σ - ϵ graph. If you are measuring toughness just for the Hookean region of the graph, Toughness = $\frac{1}{2}\sigma\epsilon$. This gives the units as Jm⁻³.

^{**} The Yield point is notoriously difficult to measure, as it is impossible to know when the internal structure of a material is being changed whilst you are actually testing it. For simplicity, the yield point is often taken to be synonymous with either the limit of proportionality and/or the elastic limit. For most materials in most practical situations this is good enough.