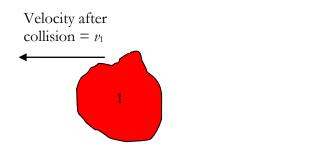
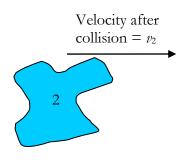

Deriving Conservation of Momentum from N(III)

Consider a collision between bodies 1 and 2:


Before collision:



During collision:

After collision:

N(III) states that, during the collision:

$$F_{12} = -F_{21}$$

Since both forces act for the same time during the collision:

$$F_{12}t = -F_{21}t$$

N(II) states that Ft = mv - mu, so:

$$m_1 v_1 - m_1 u_1 = -(m_2 v_2 - m_2 u_2)$$

i.e. the change in each body's momentum is equal and opposite to the change in the other body's momentum. Taking out the brackets on the right-hand side of the above equation gives:

$$m_1 v_1 - m_1 u_1 = -m_2 v_2 + m_2 u_2$$

Group the expressions involving u and v on either side of the equation:

$$-m_1u_1 - m_2u_2 = -m_1v_1 - m_2v_2$$

Inverting the sign of both sides gives:

$$m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2$$

In other words: Total momentum before the collision = Total momentum after the collision