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Standing Waves in Pipes 
 
 

In any standing wave, you know there are nodes (where a certain quantity does not 
change) and antinodes (where the same quantity varies by a maximum amount 
compared to anywhere else on the standing wave). For standing waves on strings, it is 
obvious to show the motion of the string itself in a diagram, so a node is where the 
string does not move, and an antinode is where it moves most.  
 
However, in a pipe, it is not as obvious what to show: do you show how the pressure in 
the pipe changes, or how the motion of the air changes? It doesn’t really matter, but 
you must be perfectly clear about which you are showing, because a node for pressure is 
an antinode for motion and vice versa! 
 
For example: 

 
 
 
 

 
 
 
 
 
To show it another way, the particles in the pipe might look like this at a certain moment 
in time (drawn to exactly the same scale as the diagram above): 
 
 

 
 
 

 
 
 
 
 
 
 
In the experiment with powder in a tube and a loudspeaker to create a standing wave 
(Kundt’s Tube) the powder collects in areas of minimum particle motion (i.e. motion 
nodes/pressure antinodes). 
 

Particles move most: this is a motion antinode. 

Particles move least: this is a motion node. 

Particles move least, but the particles either 
side squash in on them and then move 
away quickly. This exerts a large varying 
pressure. This is therefore a pressure 
antinode. 
Minimum motion =  

maximum pressure variation 
Motion node = pressure antinode 

Particles move most, but are always spread apart. Pressure is therefore constantly 
low here, so this is a pressure node. Maximum motion = minimum pressure 
variation 
Motion antinode = pressure node. 
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It’s less usual, but you can also use shading to represent the motion of particles: where 
the particles are clumped together (i.e. a motion node/pressure antinode), you shade it 
dark. 
 
However, it is easier in exams to represent the motion of air by curved sine wave lines, a 
bit like we use when drawing standing waves on strings. Again, though, how do you 
show horizontal motion of air with a sine wave shape with vertical amplitude?  
 
It is perhaps most logical if we imagine particle motion as the y-axis amplitude of the 
wave. In other words, where the amplitude of the wave shape is large, the particles are 
moving most = motion antinode = pressure node = shaded light; and vice versa. 
Therefore: 
 

 
 
 

 
 

 
 
…is what you can show by shading as: 
 
 
 
 
 
 
 
Using the idea of a wave-shape also makes it easier to understand where the half- and 
quarter-wavelengths fit into the pipe, as shown above. 
 
To sum up so far: 
 

Amplitude of wave 
shape 

Particle 
motion 

Motion… Pressure… Shading 

Large Fastest Antinode Node Light 

Small Least Node Antinode Dark 
 
Now we can use this to show how standing waves are different in closed, open and half-
closed pipes… 
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Standing waves in a pipe closed at both ends 
 
The only simple rule you have to remember in this situation is that the air at both closed ends of the 
pipe cannot move, so you must always have a motion node at either end of the pipe. This should be 
fairly obvious! The rest of the diagram just comes from this rule: 
 
Fundamental (= 1st Harmonic): 
 
 
 
 
 

 
 
1st Overtone (= 2nd Harmonic): 
 
 
 
 

 
 
 
2nd Overtone (= 3rd Harmonic): 
 
 
 
 
 

 
 
 
As you can see, you always get a whole number of half-wavelengths fitting into the tube, whatever the 
frequency of the standing wave.  
 

Therefore: 
2

tube of Length
n

 , where n = 1, 2, 3… and λ = wavelength of the wave.  

 

Since 
cf  , the fundamental frequency must be given by 

L

c
f

2
 , where L is the length of the 

tube and c is the speed of sound in the tube. 
 
 
Then, since every overtone after the fundamental adds an extra half-wavelength within the tube, the 
frequency of the first overtone must be at 2f, the second overtone at 3f, the third at 4f and so on.
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Standing waves in a pipe open at both ends 
 
The only simple rule you have to remember in this situation is that the air at both open ends of the 
pipe moves most, so you must always have a motion antinode at either end of the pipe. This is just 
the opposite rule for a pipe closed at both ends, which should also be fairly obvious! The rest of the 
diagram just comes from this rule: 
 
 
Fundamental (= 1st Harmonic): 
 
 
 
 
 

 
 
1st Overtone (= 2nd Harmonic): 
 
 
 
 

 
 
 
2nd Overtone (= 3rd Harmonic): 
 
 
 
 
 

 
 
 
As you can see, you always get a whole number of half-wavelengths fitting into the tube, whatever the 
frequency of the standing wave.  
 

Therefore: 
2

tube of Length
n

 , where n = 1, 2, 3… and λ = wavelength of the wave.  

 

Since 
cf  , the fundamental frequency must be given by 

L

c
f

2
 , where L is the length of the 

tube and c is the speed of sound in the tube. 
 
 
Then, since every overtone after the fundamental adds an extra half-wavelength within the tube, the 
frequency of the first overtone must be at 2f, the second overtone at 3f, the third at 4f and so on.
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Standing waves in a tube open at one end 
 
As you should be able to spot by now, the rules for pipes open at one end and closed at the other are 
simply a combination of the rules we have seen for completely closed and completely open pipes. In 
other words, the closed end must always be a motion node, the open end must always be a motion 
antinode. The diagrams therefore look like this: 
 
Fundamental (= 1st Harmonic): 
 
 
 
 
 

 
 
1st Overtone (= 3rd Harmonic1): 
 
 
 
 

 
 
 
2nd Overtone (= 5th Harmonic): 
 
 
 
 
 

 
 
As you can see, with this type of tube, you always get an odd number of quarter-wavelengths fitting 
into the tube, whatever the frequency of the standing wave.  

Therefore: 
4

)12(
tube of Length




n
, where n = 1, 2, 3… and λ = wavelength of the wave.  

Since 
cf  , the fundamental frequency must be given by 

L

c
f

4
 , where L is the length of the 

tube and c is the speed of sound in the tube. 
 
Then, since every overtone after the fundamental adds two extra quarter-wavelengths (= half a 
wavelength) within the tube, the frequency of the first overtone must occur at 3f (i.e. the 3rd harmonic), 
the second must be at 5f (= 5th harmonic), the third at 7f and so on. 

                                                 
1 A harmonic is any integer multiple of the fundamental frequency, whereas an overtone is any frequency higher 
than the fundamental which the system is actually capable of vibrating at. A harmonic need not be an overtone 
(e.g. in the tube above, the 2nd and 4th harmonics are not overtones), and an overtone need not be a harmonic (e.g. 
in drums). For more details, see hyperphysics.phy-astr.gsu.edu/hbase/music/otone.html  
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In real life, however… 
 

… you don’t get the motion antinode occurring exactly at the end of the pipe, but 
actually a few centimetres outside the end. This means you have to add a small 
correction factor (called the end correction) to any equations you use if you are making 
something practical (like a musical instrument) which needs to produce very precise 
frequencies. The exact size of the end correction can depend on lots of other factors 
(like the diameter of the pipe, which of course is not a constant in most wind 
instruments, as the tube flares outwards to make the ‘bell’), which is one reason why 
making good quality wind instruments is neither easy nor cheap. 
 
A general rule for calculating end corrections is that End correction = 0.29 x Diameter 
of Tube. Therefore, a bassoon would have a bigger end correction than an oboe 
because it has a bigger diameter2. End corrections also apply to each end of a tube, so, 
for example, a flute (which is basically a tube open at both ends) would have double the 
end correction of a tenor recorder (which is a similar diameter but is only open at one 
end). 
 
The University of New South Wales in Australia has a very extensive website showing 
their research into the acoustics of different musical instruments: 
www.phys.unsw.edu.au/music/ 
 
 

                                                 
2 Which leads to the highly insulting musician’s joke ‘Why is a bassoon better than an oboe? Because it burns 
longer’. 

http://www.phys.unsw.edu.au/music/
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Measuring End Corrections 

 
 
Boomwhackers (yes, really) are hollow plastic tubes which make a musical note when hit gently. Longer 
boomwhackers produce higher/lower frequency notes because their length produces a longer/shorter 
wavelength standing wave in the tube. [delete as applicable] 
 
 

Practical 
Measure the boomwhacker tubes, and use the correct formula from earlier in the booklet to complete 
the following table. The shaded columns require you to measure the actual tubes, the remaining 
columns require you to calculate values. 
 

Note 
f 

(Hz) 

Diameter 
of tube 
(cm) 

Actual 
length 
(cm) 

Theoretical 
length with 

zero end 
correction (cm) 

End 
correction 

(cm) 

End 
correction as 

fraction of 
diameter 

C 261.6      

D 293.7      

E 329.6      

F 349.2      

G 392.0      

A 440.0      

B 493.9      

C 523.3      

 


